
Enhancing collaboration and
reproducibility…

… using GitHub and distributed version control

Jay Brodeur | brodeujj@mcmaster.ca
Portage Webinar | 2020-10-06

mailto:brodeujj@mcmaster.ca

McMaster University sits on the traditional Territories of the
Mississauga and Haudenosaunee Nations, and within the lands
protected by the “Dish With One Spoon” wampum agreement

(Indigenous Education Council, May 2016).

Learning objectives

At the completion of this webinar, you should be able to:

● Explain the purpose and general function of version control systems
● Apply a variety of tools (git, GitHub, GitHub Desktop) to manage file

versions within a repository
● Apply best practices for efficiently managing and sharing repositories
● Describe how systems like GitHub can be used to support research

collaboration and transparency
● Identify opportunities to implement these tools & practices to support

research in your group or organization

But first …
A few questions for you

Local version
control

GitHub Administrative
tools

Markup &
presentation

Repositories

Outline

Version control systems - types and value

Basic workflows in git and GitHub

Managing collaboration, access, & sharing

Sharing results: Markup and presentation

Administrative tools

Version control systems
(and why you might need them)

Local version control

my-research/
 readme.txt
 ↳ data/
 ↳ trial1results.csv
 ↳ scripts/
 ↳ t1analysis.py

Local version control (the hard way!)

my-research/
 readme.txt
 ↳ data/
 ↳ trial1results.csv
 ↳ scripts/
 ↳ t1analysis.py

 ↳ t1analysis-2018-11-06.py

 ↳ t1analysis-2018-11-08.py

copy

copy

Local version control (the hard way!)

my-research/
 readme.txt
 ↳ data/
 ↳ trial1results.csv
 ↳ scripts/
 ↳ t1analysis.py

 ↳ t1analysis-2018-11-06.py

 ↳ t1analysis-2018-11-08.py

copy

copy

my-research-2018-11-06/
 readme.txt
 ↳ data/
 ↳ trial1results.csv
 ↳ scripts/
 ↳ t1analysis.py

my-research-2018-11-08/
 readme.txt
 ↳ data/
 ↳ trial1results.csv
 ↳ trial2results.csv
 ↳ scripts/
 ↳ t1analysis.py
 ↳ t2analysis.py

copy

copy

Local version control
You can track versions manually!

BUT, it’s prone to errors:

● Writing to the wrong file/folder
● Overwritten files
● Misnamed (or poorly named) files
● “I just keep forgetting to do it”
● “Which old version is the correct one?”

Image credit: PhDComics | Image © jorge cham

http://phdcomics.com/comics.php?f=1323

Local version control

Database system records changes to
files and folders over time

Benefits: Can be mostly automated;
consistent and dependable; traceability

Challenges: Not conducive to
collaboration; local system failure could
lead to data loss

Image credit: Pro Git

https://git-scm.com/book/en/v2

Centralized version control

Image credit: Pro Git

Central (remote) database records
changes from multiple local users

Users ‘check out’ a version they are
working on.

Benefits: Allows for collaboration &
granular permissions

Challenges: Can get ‘locked out’ or
lose access altogether during outages

https://git-scm.com/book/en/v2

Clients (users) clone the entire repository locally

Clients work locally; push changes to the server

Changes managed and merged at the server

Clients pull new changes

Benefits:
● Collaboration & concurrent development
● Granular permission
● No single point of failure

Distributed version control

Image credit: Pro Git

https://git-scm.com/book/en/v2

Why use distributed version control?
Distributed version control software allows you (and your collaborators) to:
● Track, compare, and revert changes (more quickly and granularly)
● Enable and manage collaborative development
● Deal with challenges of scale (# files, # changes, # collaborators)
● Share materials (openly or controlled); allow collaboration and reuse
● Backup your work to an external repository

Use it to manage:
● Software / code — Openrefine: github.com/OpenRefine/OpenRefine

● Datasets — OpenIndexMaps: github.com/OpenIndexMaps

● Documentation — DCN data curation primers: github.com/DataCurationNetwork/data-primers

● Books — Git from the Bottom Up: github.com/jwiegley/git-from-the-bottom-up

● Websites — UBC Research Commons’ intro to git: ubc-library-rc.github.io/intro-git/

https://github.com/OpenRefine/OpenRefine
https://github.com/OpenIndexMaps
https://github.com/DataCurationNetwork/data-primers
https://github.com/jwiegley/git-from-the-bottom-up
https://ubc-library-rc.github.io/intro-git/

git is a free and open source
distributed version control system to
handle everything from small to very
large projects with speed and
efficiency.

GitHub is a web-based hosting service
for version control using git. It offers all
of the distributed version control and
source code management functionality
of git as well as additional features.

Basic workflows
in git and GitHub

1. Initialize or clone a repository (in git)

Initialize git to create a new local repo in a selected directory
(with or without files)
$ cd C:/Local/my-repo

$ git init

OR

Clone an existing repo (e.g from GitHub) to your local system
$ git clone https://github.com/username/my-repo.git

Tip: Create a readme.md and LICENSE file in the top directory
➢ These become your repo’s readme file and license

A repository (repo) is a set of files/directories managed with a VCS

</> </>

</> </>

</> </>

</> </>

</>

.git
my-repo/

</>
.png

.csv

.git

</>
.png

.csv

2. Do your work

Create and edit files and folders

NOTE: Changes aren’t tracked until you take a snapshot of them.

↳ data/
 ↳

↳ scripts/
 ↳

.git
my-repo/

.md

.png
.csv

.py

3. Add or update files (in git)

Add: tell git to begin keeping track of a file and its versions
$ git add README.md

$ git add --all

$ git add *.py

Update: tell git to take note of the changes that has been
made to a file (staging)
$ git add -u

↳ data/
 ↳

↳ scripts/
 ↳

.git
my-repo/

.md

.png
.csv

.py

Image credit: Pro Git

https://git-scm.com/book/en/v2

4. Commit changes (in git)

Commit: tell git to take a snapshot of all staged (changed) files
(while keeping old snapshots):
$ git commit -m "Title" -m “Description......"

● Add a short comment and a longer description

Add and commit at once with:
$ git commit -a -m "Title"

↳ data/
 ↳

↳ scripts/
 ↳

.git
my-repo/

.md

.png
.csv

.py

Image credit: Pro Git

https://git-scm.com/book/en/v2

OK
What Now?

5b. Make a new branch to allow separate development
Clones the main/master branch (but tracked in the same git)
Allows separate development without breaking what’s in place
New branch can be later merged into the main/master one

top
↳ data/
 ↳

↳ scripts/
 ↳

.git

.md

.png
.csv

.py

<test branch>

top
↳ data/
 ↳

↳ scripts/
 ↳

.git

.md

.png
.csv

.py

<test branch>

.py
.m

.tab
</> </> </> </>

</> </> </><test branch>

<main branch>

branch merge

5a. Continue to work, add + commit

5c. Push changes to a remote repository (e.g. GitHub)
Push: send modified files (and git database and associated metadata) to a remote
repository (e.g. GitHub, or another hosted repository)

● Disseminate & share
● Enable others to modify / contribute to your work
● Manage contributions; decide what gets merged
● Merge changes & control development

github.com/username/my-repo.git

</> </>

</> </>

</> </>

</> </>

</>

Pull + Merge

In GitHub

Use the web interface to:
create / clone repository (with readme)
 ↪ upload, edit etc.
 ↪ add + commit
 ↪ branch + merge

GitHub Desktop is a desktop
application for local version control and
interaction with GitHub using a GUI.

In GitHub Desktop

Managing collaboration,
access, & sharing
with GitHub

In GitHub
Use the web interface to:

↦ create / clone a repository
● Create name and description
● Set visibility
● Add README, .gitignore, license

↪ upload, edit etc.
 ↪ add + commit
 ↪ branch + merge

Set at creation or anytime in >Settings

Options:
● Public to everyone
● Private to collaborators / teams

○ Added private features with
upgrade to paid account /
organization

Managing repository visibility

Adding a license

Created in the LICENSE file in
the top-level of the repository

Built-in license selector
(or add your own)

Managing collaborators on a personal repository
Collaborators can be added to both public
and private repositories

For personal repositories (owned by a user),
collaborators have only one set of privileges
● Can push, pull (read), and fork
● Manage pull requests, wikis, releases, etc.

More granular permissions are available for
repositories owned by organizations

Managing access with organizations and teams

Organizations are shared accounts for projects

Benefits:
● Shared ownership of (unlimited) repositories
● Top-level management of repositories
● Unlimited membership
● Range of roles and permissions
● Nested teams with cascading access
● Two-factor authentication
● Are free to create

Organization ABC123

Repository 1

Repository 2

Repository 3

Repository 4

Granular permissions
for members, teams,
public (view), and
outside collaborators,

Members of the public can view repositories

made public by organization administrators

Outside collaborators can be added to

repositories in an organization (without being
added to the organization itself)

Organization administrators can:

∙ Add users to the organization; manage members’ roles

∙ Manage access using nested teams with cascading access permissions

∙ View members' two-factor authentication (2FA) status and require

2FA

Managing access with organizations and teams

Packaging and releasing repositories

A release is a tagged snapshot of a
repository for deploying a discrete version to
broader audiences.

Releases are used when:

● Deploying software packages
● Packaging as supplemental materials

(e.g. supporting a publication)
● Archiving in data / code repositories

An Example - Archiving in Zenodo

Ashley Wolf, Asaf Ary, & Hossein Firooz. (2020, August 12).
Yahoo Knowledge Graph COVID-19 Datasets (Version
8-08-2020). Zenodo. http://doi.org/10.5281/zenodo.3981432

Main repo: https://github.com/yahoo/covid-19-data
Release (forked):

https://github.com/rexdouglass/covid-19-data/tree/8-08-2020

http://doi.org/10.5281/zenodo.3981432
https://github.com/yahoo/covid-19-data
https://github.com/rexdouglass/covid-19-data/tree/8-08-2020

Communication & collaboration tools - Pull requests

Image credit: GitHub guides

https://guides.github.com/features/issues/

Communication & collaboration tools - Pull requests

Communication & collaboration tools - Project Boards

Image credit: GitHub blog

https://github.blog/2014-05-01-wikis-now-with-more-love/

Communication & collaboration tools - Wikis

Image credit: GitHub blog

https://github.blog/2014-05-01-wikis-now-with-more-love/

Markup and presentation
GitHub as the medium

Example: GitHub repository as a preprint

Paez, A., López, F., Menezes, T., Cavalcanti, R., Pitta M.G.R., 2020. A Spatio‐Temporal Analysis of the
Environmental Correlates of COVID‐19 Incidence in Spain, Geographical Analysis

https://github.com/paezha/covid19-environmental-correlates

https://github.com/paezha/covid19-environmental-correlates

Markdown in GitHub

● A very lightweight markup language used by GitHub (and Reddit, and Trello)
● Improves formatting while leaving the plain document readable.
● Mostly just regular text with a few non-alphabetic characters thrown in

Learn more: https://guides.github.com/features/mastering-markdown/

Markdown Rendered text

https://guides.github.com/features/mastering-markdown/

GitHub Pages
“GitHub Pages is a static site hosting service that takes HTML, CSS,
and JavaScript files straight from a repository on GitHub, optionally
runs the files through a build process, and publishes a website.”

GitHub pages also allows you to create webpages from markdown
files, using a built-in software called jekyll.

https://jekyllrb.com/

Administrative Tools
To support research & teaching

GitHub Classroom
Tools to use GitHub for course management
● Manage students in an organization
● Create assignment repositories from templates
● Granular access management of submitted materials
● Automated management & grading

GitHub Campus Program
Provides Institutional-level access to GitHub Enterprise Cloud, which:

● Helps institutions manage collaboration and access
(including SAML single sign on and 2FA)

● Allows unlimited organizations

● Access to GitHub Enterprise Support

● Offers premium features (such as continuous integration)

● Provides administrators a single point of visibility and management.

education.github.com/schools

Local version
control

GitHub Administrative
tools

Markup &
presentation

Repositories

And again …
One more question

Learn more
The Git Pro book: https://git-scm.com/book/en/v2

Introduction to GitHub: https://lab.github.com/githubtraining/introduction-to-github

GitHub Guides: https://guides.github.com/

UBC Library Research Commons - Intro to git and GitHub: https://ubc-library-rc.github.io/intro-git/

Getting started with GitHub Pages: https://guides.github.com/features/pages/

GitHub Classroom: https://classroom.github.com/

GitHub Campus Program: https://education.github.com/schools

https://git-scm.com/book/en/v2
https://lab.github.com/githubtraining/introduction-to-github
https://guides.github.com/
https://ubc-library-rc.github.io/intro-git/
https://guides.github.com/features/pages/
https://classroom.github.com/
https://education.github.com/schools

